Search Matters 2016
The EPO pre-search framework
Agenda

1. Background of pre-search
2. The pre-search algorithms
3. Input for pre-search algorithms
4. The bibliographic search
5. The class-based search
6. The term based search
7. Presentation of the results from pre-search
8. Evaluation of the pre-search algorithms
9. Working with results of an automated search
10. Future of pre-search
11. Conclusions
Background of pre-search - 1

What do the EPO Guidelines say about pre-search?

- A **pre-search algorithm** creates a list of documents to be inspected is created: automated search!

- Pre-search triggered by creation of European Search Report, European Search Opinion or Rule 62a and/or 63(1) EPC clarification request

Chapter IV – Search procedure and strategy

1. **Procedure prior to searching**

 Upon creation of a European search report, a European search opinion or a clarification request under Rule 62a and/or 63(1), a generating a list of documents to be inspected by the examiner is triggered. This creates a marker which serves as evidence in the file that the Search Division has started the search. The date of the start of the search is relevant for a possible refund of the search fee in case the application is withdrawn, refused or deemed to be withdrawn (see A-X_10_2_1).
Background of pre-search - 2

Primary objective: to retrieve
- **Relevant prior art** under Article 54(2) EPC
- (Un)published co-pending applications, prior art under Article 54(3) EPC

Secondary objective: to gather information useful to the examiner
- CPC, IPC, FI/FT-classes potentially relevant for the search
- Potentially relevant terms/passages from the application
- *Work in progress*

Pre-search puts the examiner in a favourable position at the start of the search
Search can be re-focused after assessing pre-search results
- Pre-search increases the speed and quality of search
The pre-search algorithms

- Several algorithms used!
 - By default, pre-search is fully automatic- no user input is needed
- Citation retrieval
 - Applicant citations
 - Citations from ISA
 - Citations from other Patent offices
 - Documents citing the application
 - Use of the One Portal Dossier for citations from the IP5 Offices
 - NPL citations included
- Bibliographic search
- Class-based search
- Term-based search
Input for pre-search algorithms - 1

European Patent Application

EP 2 262 208 A1

Date of publication: 15.12.2010 Bulletin 2010/50
Application number: 10165135.4
Date of filing: 07.06.2010

Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB
GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO
PL PT RO SE SI SK SM TR
Designated Extension States:
BA ME RS

Priority: 08.05.2009 KR 20090050260

Applicant: LG Electronics
Seoul, 150-721 (KR)

Inventors:
- Seo, Kyeong-Hye
 153-801, Seoul (KR)
- JungG, Jang Jae
 153-801, Seoul (KR)
- Kim, Tae Hun
 153-801, Seoul (KR)

Representative: TER MEER - STEINMEISTER & PARTNER Gbr
Patentanwälte
Mauerkircherstrasse 45
81679 München (DE)

Class-based search
Bibliographic search
Input for pre-search algorithms - 2

Method for executing a menu in a mobile terminal and mobile terminal using the same

The present disclosure is related to a method for executing a menu in a mobile terminal, the method comprising: inputting (S2) a drawing pattern (1-9) on a touch screen of the mobile terminal; displaying a menu corresponding to the drawing pattern and a sub menu thereof on the touch screen by comparing (S3) a pre-stored drawing pattern table with the drawing pattern; and executing (S8) the sub menu by selecting the sub menu and a mobile terminal thereof.

FIG. 7

(b)

Term-based search

Citation retrieval

Patent documents cited in the description

- KR 1020090366280 (0001)
The bibliographic search

- Implemented as the APDEX algorithm (developed by A. Materne)

- Uses bibliographical information as search input
 - Inventor names
 - Applicant
 - Representative

- Will retrieve prior art from same applicant/inventors
 - Co-pending (un)published applications
 - Article 54(3) EPC documents
 - Documents relevant to the right to priority for the application
The class-based search

- Implemented as the **FTRK** algorithm (developed by A. Materne)

- Directed to Japanese prior art

- Uses F-terms and FI-classes of any Japanese family member of the application as search input

- Will retrieve Japanese prior art having a Japanese classification similar to the application

Work in progress:
- Generalisation of class-based search
- Extension to CPC-classes, IC-classes....
The term-based search

* Implemented as the **Ansera-MLT, PS1** (developed by Y. Kingma) and **XFR** (developed by A. Materne) algorithms

* Extracts terms or combination of terms from abstract, claims and/or description as search input

* Will retrieve prior art disclosing these terms, *ranked* in an order of potential relevance

* Ansera-MLT and PS1 extracts and searches for individual terms, and implements inverse document frequency ranking

* XFR extracts and searches for combinations of terms, and implements Horváth-Materne ranking
Presentation of the results from pre-search - 1

- Pre-search is triggered at the start of the search
- When pre-search has finished (<5 minutes), the results (on average 47) are presented to the Examiner in the Viewer in a dedicated drawer

Citation from ISA
Document also found by Ansera-MLT

Citation from ISA
Presentation of the results from pre-search - 2

The pre-search results are ranked according to potential relevance:

The examiner can therefore study the most relevant documents first.

But how can we know which documents are the most relevant?
Evaluation of the pre-search algorithms - 1

After each run of pre-search, the publication numbers provided by pre-search are stored, as well as name of the algorithm(s) that found the document.

When the examiner drafts the search report, the publication numbers of the documents cited are stored as well and compared to the pre-search results.

The documents cited in the search report are the gold standard.

This information enables us to evaluate:
- the efficiency of the pre-search algorithms
- the ranking of the results of the pre-search algorithms
Evaluation of the pre-search algorithms - 2
Evaluation of the pre-search algorithms - 2

NB: Only patent publications taken into account for this evaluation!
Evaluation of the pre-search algorithms - 3

- Evaluation of ranking for Ansera-MLT in pre-search - better ranked documents have higher chances of being cited in Search Report!
- Proof of concept for pre-search ranking
Working with results of an automated search - 1

Working with automated search tools might be challenging for the user.

In the classical Boolean database search, the examiner “knows” why each document was included in the result set:

- Example: Searching for all documents classified under G06F3/044/IC disclosing the term “proximity” in the WPI abstract.

Problem: This does not apply for an automated search.

- “Why was this prima facie irrelevant document returned by pre-search?”
- Might cause confusion and decreased trust in the automated search tools.
- Worst case scenario: User feels the need to study irrelevant document in more detail -> loss of time.
Proposed solutions based on EPO experience with pre-search:

- The user should have studied the application very carefully before evaluating any results from the automated search
- Knowledge gives power to avoid wasting time on irrelevant prior art

- The users readily accept and appreciate automated search, but they will always be curious: “Why was this document returned?”

- The automated search tool should thus be able to inform the user in detail about the origin of each document in the result set:
 - Was the document cited by the applicant/ISA/USPTO?
 - Category of citation? For which claims?
 - Search terms used for term-bases search tools
Working with results of an automated search - 3

The usefulness of an automated search will depend on many factors, including:

- Technical field of application
- Complexity of application
- The needs and taste of the individual user

Possible solution:

- Application-dependent settings for the automated search based on previous experience, “fine-tuning” - work in progress
- Give the users some control of pre-search settings
Working with results of an automated search - 4

How many documents should an automated search return?

- Depends on
 - Potential usefulness of the results
 - Time needed to study each document
 - Complexity of prior art
 - Functionality of document viewing software

Reasonable number: 50 documents (EPO experience with pre-search)

- Balance between precision/recall of result
- The user should be able to control the amount of results
Working with results of an automated search - 5

Do the users accept/appreciate working with pre-search?
- Some initial reluctance
- Typical question a few years ago:
 - “Why do these documents appear in my working list?”

With more experience and knowledge, attitudes change
- Typical question today:
 - “Why were no results returned from Ansera-MLT for my application?”

Automated search via pre-search has become an integral part of the work of the EPO examiner
Future of pre-search

- Constant **improvements of algorithms**
 - The effect of any changes can be evaluated automatically
- Optimize **number of documents returned** by pre-search
 - Quality of results estimated
 - Number of documents returned adjusted accordingly
- Extending pre-search to **non-patent literature**
 - Highly important for certain technical fields
- Improve **presentation** of results to user
 - Ensure that examiner is able to understand why documents were found by pre-search
- Let pre-search provide more **additional information** to the user
 - CPC, IPC, FI/FT-classes potentially relevant for the search
 - Potentially relevant terms/passages from the application
Conclusions

The EPO pre-search framework provides the examiner with prior art found by several different state-of-the-art algorithms.

The automatic evaluation of the efficiency of the algorithms puts the EPO in a favourable position to improve pre-search.

Automatic search brings many benefits to the search professional:
- but some care should be taken when working with results from an automated search.

Potential for future improvements is great:
- In the future, the role of the automated search will be even more important than today.